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SUMMARY 
A new finite element technique is developed for predicting the velocity and the pressure in transient 
incompressible viscous fluid flows at  high Reynolds numbers. The new method is based on the generalized 
and simplified marker-and-cell met hod (GSMAC) and has two characteristics: one is an application of the 
Bernoulli function and the implicit pressure solution algorithm to the explicit fractional time step method, 
the other is a high-order flux calculation to prevent the pressure field from oscillating. Two examples, driven 
cavity flows at high Reynolds numbers and vortex shedding behind a circular cylinder, are presented. 
Satisfactory agreement with experiment is demonstrated. 
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1. INTRODUCTION 

Numerical solutions of the Navier-Stokes equations for two-dimensional flows of incompressible 
fluid are generally given in terms of velocity and pressure or streamfunction and vorticity. The 
former formulation may be preferable because the treatment of boundary conditions is not only 
direct and easy but also extensible to three dimensions. The major difficulties arising with the 
primitive variable formulation are connected with the enforcement of a suitable approximation of 
the incompressibility constraint and the computation of pressure.’. ’ The MAC (marker-and-cell) 
finite difference scheme3 has overcome these difficulties using a staggered mesh as shown in 
Figure l(a), but it has less generality because of the required orthogonality of co-ordinates. On the 
other hand, the finite element method in which the pressure, like the velocity, is defined at the 
nodes of each element can lead to spurious numerical oscillations in the pressure field. 

In the present paper a new finite element method is proposed which is analogous to the SMAC4 
and the HSMAC’ schemes and is called the GSMAC (generalized and simplified MAC) 

The variables in the GSMAC scheme are velocity and total energy8p9 instead of 
velocity and pressure. The MAC scheme is based on velocity components defined at the cell mid- 
sides and does not produce any oscillations in the field variables. The GSMAC extension of the 
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Figure 1. MAC scheme and GSMAC scheme in 2 D  (a) MAC scheme; (b) GSMAC element 

SMAC and HSMAC schemes is shown in Figure l(b) for the two-dimensional case. The velocity 
staggering due to equation (7) is like the SMAC scheme and the pressure correction due to step 4 
in Section 3.2 is like the HSMAC scheme. 

When the same interpolation functions are employed for pressure and velocity, velocity 
oscillations are produced. However, these oscillations are eliminated by making the interpolation 
function for pressure one order less than the interpolation function for velocity. 

When a fine mesh is used, low-order approximations are more economical in CPU time than 
high-order approximations. Hence the lowest interpolation functions are adopted in the GSMAC 
method: piecewise bilinear in 2D or trilinear in 3D for the velocity and constant over each element 
for the total energy. As benchmark problems, the flow in a driven cavity and vortex shedding 
behind a circular cylinder are examined at high Reynolds numbers. 

2. PROBLEM FORMULATION 

We consider here a flow in a cavity in the domain depicted in Figure 4(a) (see Section 4). The 
equations governing the flow are the equation of momentum written in rotational form and the 
equation of continuity written in solenoidal form: 

a V  1 
- = - V H - - V X W + V X ~ ,  
at Re 

v.v=o, (2) 
where equation (1) is based on the orthogonal decomposition of the vector field and equation (2) 
corresponds to mass conservation for incompressible fluids. Here v is the velocity and w is the 
vorticity, with w = V x v. H is the Bernoulli function (total energy), which is a sum of kinetic, static 
pressure and potential energies: 

H = p/p + 1 v 12/2 + n (3) 
where p is the pressure, p is the density of the fluid and R is the potential of the external force. 
Re = U, L/v is the Reynolds number, where U o  is the driven velocity, L is the length of the square 
cavity and v is the kinematic viscosity. Taking the divergence of the momentum equation (1) leads 
to the Poisson equation for the Bernoulli function: 

V 2 H  = V . ( V  x w). (4) 

This Poisson equation with respect to the total energy will be important when we obtain the 
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pressure field at time (n+ 1)At. In the present method equation (4) is used as a supplementary 
equation. 

These equations are subject to the Dirichlet and/or Neumann boundary conditions. The 
normal projection of equation (I)  leads to the Neumann condition dH/dn, and the Dirichlet 
condition of H, if needed, is given by extrapolation at boundaries.* The boundary conditions for 
equation (4) are discussed in Reference 10. 

3. GSMAC FINITE ELEMENT METHOD 

3.1. Discretization of time 

Before considering the fully discrete case, we first consider semidiscrete versions in time. 
Adopting the implicit formulation for the total energy and the explicit formulation for the velocity 
leads to the following equation: 

V"+l -v" 1 
= - V H n f ' - - - V ~ ~ " + ~ " ~ ~ " .  

At Re 

Often the non-linear terms in the Navier-Stokes equations are treated explicitly using the third- 
order Adams-Bashforth method and the viscous term implicitly using the second-order 
Crank-Nicolson method. In the present method the vorticity is introduced as an explicit variable 
to simplify the algorithm. Equation (5 )  can be solved using the implicit pressure solution 
algorithm" and the explicit fractional time step method. As a result we obtaifl the following 
method. 

A predictor of velocity is calculated from the forward Euler form: 

I-V" 1 -- - - V H" - -V x O" + V" x o". 
At Re 

Here I is a predictor of velocity at time (n+ 1)At. Correctors of the velocity and the Bernoulli 
function are calculated from a scalar potential $: 

(7) V"+ 1 = I - V$, 

H"+'=H"+H*, (8) 
where H* =$/At. Since H is the total energy per unit volume, the change of H in dynamical 
processes is expected to be small compared with the change in pressure alone. Therefore the 
absolute value of H* is also expected to be small, especially in regions of low energy dissipation. 

The velocity field is solenoidal, so equation (7) is rewritten in the following form when we take 
the divergence of equation (7): 

(9) 

V2$ =V*I. (10) 

v . v n + l  - - 0, 
which gives 

This Poisson equation (10) is solved by iteration using the modified cycle-to-cycle self-adjustment 
method12 together with equations (7) and (8). The boundary condition of equation (10) is 
d$//an=O on the rigid boundaries because of zero mass flux and $=0 on the open boundaries 
because simultaneous relaxation of the velocity (7) and the Bernoulli function (8) means that 
I+v"+' and @+H"+I, i.e. $+O after some iterations (see step 4). 
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3.2. GSMAC algorithm 

The iteration techniques employed in the present paper for rapid convergence and for stable 
time marching consist of the following steps. 

Step I :  Initial. Assume all the values of velocity and pressure at time nAt. Hence we can 
calculate the Bernoulli function and vorticity at time step n. 

Step 2 Predictor. Solve equation (6) to obtain the first predictor of velocity from the values of H 
and v at time n. 

Step 3: Poisson equation. Solve the Poisson equation (10) roughly by iteration using 
equation (23). This is the first iteration. 

Step 4: Corrector. Correct the Bernoulli function and the velocity using equations (7) and (8). 
Check to see if the velocity field is solenoidal. If it is not solenoidaly return to step 3. This is the 
second iteration. 

Step 5: Momentum iteration. If the convergence of (1 V-v (1 4 E, where e.g. E = is not enough 
after a few cycles of steps 3 and 4, first of all solve equation (4) by iteration giving an error criterion 
such as equation (38) with the predictor V.(9 x o) in order to find the predictor of H close to time 
(n  + 1)At. Then solve equation (6) using the updated values of H and v on the RHS of (6) to give a 
new predictor of velocity. Then repeat the same procedure from step 3. This is the third iteration, 
which indicates the full implicit formulation of the Navier-Stokes equations. The fifth step may 
usually be omitted for flows at low Reynolds numbers. 

3.3. Discretization of space 

can be written as 
The GSMAC discretization is a special case of the general weighted residual formulation and 

Here $ is a test function, &ijk is a permutation tensor and (. , .), denotes the inner product with 
respect to the weight function w, that is 

P 

where V, is the volume of element. The spatial discretization (12) is completely described by the 
choice of bases for $ and ui and the choice of the inner product weighting w. The choice of the same 
polynomials for $ and ui with w = 1 results in an isoparametric Galerkin method. For piecewise 
smooth finite approximations, the weak form is much more appropriate to reduce the degree of 
required continuity: 
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where S ,  is the boundary surface of element V,. The interpolation function for I,$ and ui in the 
GSMAC method is bilinear in 2D or trilinear in 3D; H and wi are taken constant over each 
element and defined at the centre of each element. Substituting equations (13) and (14) into 
equation (1 1) leads to the following matrix equation: 

where M,, is the lumped mass matrix of Ma@. This discretized equation corresponds to 
equation (6). In equation (15), 

Ma,= NaNBdV (mass matrix), (16) 

(velocity vector), (17) 

s, 
vg= cup u p  W p l  

V, = IVe V Nad V (del operator), (18) 

1 
we = v, Is. dSn x v (vorticity vector in 3D), 

(vorticity in 2D), 
1 

we=% fca v*dr 

(boundary term), 

n=[I,m,n] (unit normal vector of surface), (22) 
where C, is the boundary line of element S,  in 2D and Nu and NB are shape functions. Equation (15) 
is solved by the element-by-element method' to reduce computer memory requirements. The 
volume integration is carried out using one-point quadrature. The Gauss-Legendre integral 
formula is used for the surface integral terms. During the iteration steps, all matrices and some 
vectors appearing in equation (1 5 )  are kept constant. Therefore the calculation of coefficient 
matrices is done only once. 

3.4. Poisson equation 

following iteration formula: 
The Poisson equation (10) is solved by the false-time method. The Gauss theorem leads to the 

where 1 is a parameter of relaxation and AT is an increment of false time. From the stability 
condition of von Neumann, AtA/JS,<@25 in 2D and A.tA/3JVe<@33 in 3D for a homo- 
geneous mesh. After some iterations according to the criterion of equation (38), we obtain a rough 
solution of $I=: 

(24) 
Then, using equation (7) and (8), we get new predictors of velocity and Bernoulli function. The 
most important part of the GSMAC method is the calculation of &$/an on the surface in 

I$:+ 1 x 4: x 4,. 
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equation (23). The definition of gradient is given by 

and this definition leads to the formula14 

for the surface integral of element VK in Figure 2(a). Here the coefficients are 

A ,  =- (& x b&(G x ba), 

(& x Gd)*(Gd x CK), 

A, =- (& x bJ)*(& x Ki). 

12 Vocta 

12 Vwtn 

12 Voc,, 

1 
A,=-  

The volume of octahedron KabcdL is - 
Voct,=&KL.(& x ba). (30) 

When the vector K I  is normal to the surface 2 x b2, the coefficients A, and A ,  become zero. 
For the two-dimensional case in Figure 2(b) we have 

x 3  

X *  

X' 

L 

' SQ \ , 
b 

(b) 
\ 

(a) 

Figure 2. Flux calculation in 3D and 2 D  (a) Flux calculation in 3D, (b) Flux calculation in 2 D  
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where the coefficients are 

6a-b; 

<L b> 

A1 =- 
2SKaLb’ 

A2=-. 
2SKaLb 

The area of quadrilateral KaLb is 

SKaLb=$IKI x b>(. 

When the vector a% is orthogonal to the vector K i ,  the coefficient A, is equal to zero. 

(32) 

(33) 

(34) 

3.5. Interpolation of 4 
The values of C$e are defined at the centre of each element, but we need the values of 4i at each 

node when we execute a calculation of the Poisson equation (23). See Figure 3 for the two- 
dimensional case. The piinciple of the least squares of error, 

(NiC$i-Ne4e)2dV, (35) 

leads to the matrix equation 

M,,.4,.=B,, 

where M i j  is a mass matrix and 

Bi = Ni Net-jed V. 

Equation (36) is solved by the three-pass algorithm.’ 

3.6. Criterion of convergence and stability condition 

A criterion of convergence for the Poisson equation in the first iteration is 

< E l .  
c, I 8s.n * i d s  - $s.(a4/an)dS I 

Zt? v e  

(37) 

The second criterion of convergence for the solenoidal velocity field in the second iteration is 

maxldiv v”+ I,< c2, (39) 

Figure 3. Interpolation of I$ from element to node 



486 T. TANAHASHI, H. OKANAGA AND T. SAITO 

Letting he = Vt'3 be a characteristic length of element, the conditions for time increment that we 
enforce are 

for the Courant number and 

At,, <$Re(hkin)2 

for the diffusion number. This gives the following inequality as a stability condition for the time 
increment: 

At ,<min(At,, Atd). (42) 

4. RESULTS AND DISCUSSION 

4.1. GSMAC element 

As an example of the present method we consider here a driven cavity flow as shown in 
Figure 4(a). The GSMAC element used here is a quadrilateral element as shown in Figure l(b). 
This element is easily extensible to three dimensions, in which case we would use the octahedral 
element shown in Figure 2(a). The lowest interpolation functions are adopted in this element, i.e. 
piecewise bilinear for the velocity and constant over each element for the total energy. The 
essential points behind the GSMAC method are that when the Poisson equation is solved, the 
values of scalar potential @ in the elements are transformed to values of r#+ at the nodes as shown 
in Figure 3 using the least-squares method, and the volume integral is transformed into the surface 
integral as shown in Figure 2(b) using the Gauss theorem in order to calculate mass flux on the 
surface. 

4.2. Dependence of solutions on mesh 

The accuracy of solutions depends on the design of mesh. Four types of mesh are used for 
calculation as shown in Figure 5. Types A and B are coarse and types C and D are fine. Types A 

(0.11 u.1. v.0 (1.1) 

IO.01 u=o.v=o (1.0) IO.01 u=o.v=o (1.0) 

H T L  
U 

(a) (b) 

Figure 4. Driven cavity flow model (a) Boundary conditions; (b) Flow configuration and nomenclature 
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t y p e  A type R 
(20x20.400 element) (20 x20, 400 element) 

t y p e  C t y p e  D 
(50 x 50.2500 e 1 emcn t)  (50 x 50,2300 element ) 

t y p e  B t y p e  D 
Figure 5. Dependence of solutions on mesh; Re = lo00 
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( a  1 R.=100, f =5 

( C )  R.=lOOO. t = 4 0  

( d )  R.=5000.1=80 

( e )  R~=lOOOO.t=12O 

(4 (b) 

Figure 6. Steady state solutions: (a) Stream line; (b) velocity distribution 
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and C are bilinear meshes with equi-intervals and types B and D are log-log meshes with different 
intervals which become fine near the boundary. We obtained good results using coarse meshes at 
Reynolds numbers from 100 to 500, but, as shown in Figure 5, velocity wiggles appear at a 
Reynolds number of 10oO. Hence we use type D for Reynolds numbers higher than 10oO. 

4.3. Flow dependence on Reynolds number 

Figure 6 shows how flows in the cavity depend on the Reynolds number. The flow configuration 
is characterized by the locations of the centres of the main vortex and the secondary vortices, and 
by their sizes. Comparison of the characteristic values with results Ghia et a l l 6  is shown in Table I 
according to the nomenclature in Figure qb). Here we should note the following fact: Ghia et al. 
used 129 x 129 mesh at Re= lo00 and a 257 x 257 mesh at Re> 5000. Although we used only a 
50 x 50 mesh, the accuracy of the solutions appears almost the same as theirs. Figure 7 shows 

Table I. Comparison of characteristic values 

Re Parameter GSMAC Ghia et a1.16 

(0*6269,07371) 

(05967,0621 1) 
(0.8926,01137) 

0.2540 
0.2528 

(0*5335,0-5653) 
(0.8672,01119) 
(0.0822,0073 1) 

03091 
0.3410 
0.2045 
0 1523 

(0.5120,05337) 
(0.8134,0753) 
(0.0750,01378) 
(0.0658,09045) 

0.3496 
0.4350 
0.3 159 
0.2693 
01208 
0.2555 

(05125,0.5274) 
(07944,00640) 
(0.0790,O 1400) 
(0.0758,0*9120) 

0.3773 
0.4529 
0.3515 
0-2834 
0.1683 
0.3463 

(0.6172,0.7344) 

(0-5547,06055) 
(08906,01250) 

0.2 167 
0.3203 

(0.5313,0*5625) 
(08594,0*1094) 
(00859,0.0781) 

0.3034 
0.3536 
02188 
0.1680 

(05117,0.5352) 
(0*8086,0.0742) 
(0.0703,0-1367) 
(0.0625,0.9102) 

0.3565 
0.4 180 
0.3 184 
0.2643 
01211 
0.2693 

(05117,05333) 
(07656,00586) 
(0*0586,0.1641) 
(0.0703,09141) 

0.3906 
04492 
0.3438 
0.2891 
01589 
0.3203 
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0. 5 r  

- t V O P  n - - - - I V O P  A - - - tvoe R : Present (t-40) ~,~~ . I .  

0: Ghia e t  al. i i i9xi29. M u i i i  G r i d  FDM) 
0 : Schreiber-Keller (180x180, FDM) 
A : NaIIasany-Prasad(50~50, upwind FDM) 
A : Fortin-Thomasset (12x12, Mixed FEM) 

Figure 7. Distributions of x- and y-components of velocity: (a) x-component of velocity; (b) y-component of velocity 

the distributions ofx- and y-components of velocity on the centrelines of the cavity. These also 
shows good agreement with the results of type D. 

The results of Nallasamy and Prasad” and Fortin and Thornmasset’* are excellent but differ 
slightly from the results of Ghia et a1.16 and Schreiber and Kellerlg in the x-component of velocity. 
Steady solutions at Re= 1000, 5000 and loo00 are shown in detail in Figure 8. Values of 
streamlines and vorticity lines are given in Table 11. In Figure 9(a) comparison of the height of the 
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R,=1000, 

00 

90 

80 

70 

60 

50 

40 

30 

20 

10 

00 

t=40 

R,=5000, t=80 

Figure 8. Steady solutions at Re = lO00, 5000 and loo00 (a) stream line; (b) Vorticity line 
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Table 11. Streamfunction and vorticity 

Stream function Vorticity Streamfunction Vorticity 

a 
b 

d 
e 
f 
g 
h 

C 

I 

j 
k 

- 0 1  
- 0.09 
- 0 0 8  
- 0.07 
-006 
- 005  
- 0 0 4  
- 0 0 3  
- 0 0 2  
- 0 0 1  
0.0 

- 10.0 
- 4.0 
- 3.0 
- 20 
- 1.9 
- 1.8 
- 1.7 
- 1.6 
- 1.5 
- 1.4 
- 1.3 

1 
m 
n 

P 
9 
r 

t 

0 

S 

U 
V 

0.2x 10-3 
0 4  x 10-3 
0.6 x 10-3 
0.8 x 10-3 
1.0 x 10-3 
1.2 x 10- 3 

1.4 x 10- 3 

1.6 x 10-3 
1.8 x 10- 3 

20 x 10-3 
2.2 x 10- 3 

- 1.2 
- 1.1 
- 1.0 
- 0.8 
- 0.6 
- 0 4  
- 0.2 

0.0 
1 .o 
20 
3.0 

0.4 - 

0.3 - 
s: 

s" 
0.2 - 

O.l  t 
V 

V 

o v  

-I 0 

Re 
0 : Present Method 
0 : Ghia, e t  a]. (1982) 
0 : Schreiber and Keller (1983) 
0 : Nallasamy and Krishna-Prasad (1977) 
A : Koseff and S t r ee t  (1984) (experiment) 
V : Pan and Acrivos (1967) (experiment ) 

Figure 9. Height of the secondary vortex at the lower right corner 

secondary vortex at the lower right corner with experimental results of Koseff and Street2' and 
Pan and Acrivos2l is shown. There is a bifurcation point near Re= 1OOO. Both experimental and 
old theoretical data by Nallasamy and Prasad" and Pan and Acrivoszl show a decrease, whereas 
recent data by Ghia et Schreiber and Kellerlg and Koseff and Street2' and our results show 
an increase, as the Reynolds number increases. 

4.4. Transient phenomena 

In this case the fluid in the cavity is at rest initially and the surface at the top of the cavity is 
suddenly set in motion. Hence fluid in the cavity begins moving by shear stress owing to the 
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Figure 10. Time evolution of corner vortices; Re= lOO00, A1+h=O.O002 
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viscosity of the fluid. The motion of the fluid reaches a steady state gradually. The time marching 
in the GSMAC method is used for unsteady flows, so we can investigate the transient phenomena 
of driven cavity flows. Three secondary vortices appear in the cavity. These vortices are not stable 
in the transient state. Their evolution with time is shown in Figure 10. By the time t=40 we can 
observe that their shapes have developed towards the final values. Loci of the main vortex at 

&lrn/ 0.5 

C Center  o f  t h e  main v o r t e x  

0.0 a5 1.0 
X 

Y P a t t e r n  of  t h e  s p i r a l  m o t i o n  

P 

P a t t e r n  of t h e  s p i r a l  m o t i o n  I 

Figure 11. Loci of the centre of the main vortex: (a) Re= SOOO, (b) Re= loo00 

1.0 

>r 
0.5 

1 0 Center  of t h e  maIn v o r t e x  1 
0.0 
0.0 0.5 1.0 

X 

Figure 12. Location of the centre of the main vortex 
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Re = 5000 and loo00 are shown in Figure 11. They are spiral. The motion at  Re=5000 becomes 
steady after one cycle. In comparison, the motion at Re= 10000 reaches a steady state gradually 
after some rotations. The location of the centre of the main vortex is shown in Figure 12 for each 
Reynolds number. The centre of the main vortex at Re = loo00 is almost at the centre of the square 
cavity at the time t= 120. 

4.5. Flow past a circular cylinder 

As an example of distorted general meshes, we present next a start-up flow around a circular 
cylinder which is caused by the pressure gradient. The model and the boundary conditions are 
shown in Figure 13 and the mesh used is shown in Figure 14. The boundary term of equation (21) 
is rewritten for the traction-free outflow condition as follows: 

r r r  

Sa=J 
s; 

(43) 

When the traction on the surface is zero, the second term on the RHS of equation (43) becomes 
zero and the value of H on the surface is simply given by extrapolation, which is very convenient. 
Initially the fluid in the region is at rest everywhere. The Reynolds number is chosen as 3000 

u = l ,  LJ=o 

Y 

I t I 
I u=o. u = o  I 

I 

0 

u= 1. u=o 

Figure 13. Flow past a circular cylinder: analytical model and boundary conditions 

Figure 14. Finite element mesh; 4680 elements and 4801 node points 
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Figure 17. Comparison of streamlines though the separation point; t = 2.5, Re = 3000, Arb. =002. The open squares are the 
experimental results of Bouard and CoutanceauzZ 

L : Length of Closed Wake 
u : Location of Vortex Center Measured 

b : Distance between Vortex Centers 
D Diameter of Cylider 

from the Rear of Cylinder 

Figure 18. Geometrical configuration of a twin vortex 

-0.21 I I I I I I 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

t 

Present Method : 0, LID; A, a/D; 0, b / 2  D 
Experiments of Bouard and Coutanceau(l980) : *, LID; A, a/& 1, b / 2  D 
Figure 19. Time evolution of a twin vortex; Re= 3000 
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I I t = 2.0 I t = 8.0 

Figure 20. Example of vortex shedding behind a circular cylinder; Re=550, A$=O.OOl 

Although the narrow width of the calculated region makes the length of wake long, on the whole 
we have good agreement with experiment. 

To conclude, Figure 20 shows an example of vortex shedding behind a circular cylinder at 
Re = 550 where a longer time was simulated. 

5. CONCLUSIONS 

The GSMAC finite element method presented here is confirmed to be suitable as an incompress- 
ible Navier-Stokes solver at high Reynolds numbers. This new method is composed of: 
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(a) orthogonal decomposition of the flow field described by the rotational form of the 

(b) implicit formulation for the Bernoulli function and explicit formulation for the velocity and 

(c) modified cycle-to-cycle self-adjustment using a false-time method 
(d) implicit pressure solution algorithm by iteration 
(e) explicit fractional time step method expressed by predictor and corrector of the velocity 
(f) a generalization of the MAC method to a finite element method 
(g) mass-lumping technique and multipass algorithm 
(h) one-point quadrature 
(i) an element-by-element solution method to reduce memory requirements. 

We will show some examples of three-dimensional flow in a future paper, including effects of 

momentum equation 

vorticity 

heat convection and electromagnetic interaction with fluid. 
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